Acta Cryst. (1998). C54, 1195-1197

α -Ammonium Vanadium Hydrogen Phosphate, α -(NH₄)V(HPO₄)₂

ZSOLT BIRCSAK AND WILLIAM T. A. HARRISON

Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia. E-mail: wtah@chem.uwa. edu.au

(Received 3 November 1997; accepted 16 February 1998)

Abstract

 α -Ammonium vanadium(III) bis(hydrogen phosphate) is a new ammonium vanadium(III) phosphate built up from a three-dimensional framework of VO₆ octahedra and HPO₄ tetrahedra [$d_{av}(V-O) = 2.008$, $d_{av}(P-O) = 1.538$, $d_{av}(N \cdots O) = 3.086$ Å and $\theta_{av}(V-O-P) = 139.5^{\circ}$]. It is isostructural with α -RbV(HPO₄)₂ and complements the previously described β -NH₄V-(HPO₄)₂: α -NH₄V(HPO₄)₂ contains both four-ring (two VO₆ and two HPO₄) and lantern (two VO₆ and three HPO₄) groupings, whereas β -NH₄V(HPO₄)₂ contains only four-ring polyhedral groupings.

Comment

Haushalter *et al.* (1995) recently demonstrated that polymorphism is possible for rubidium vanadium(III) hydrogen phosphates: the hydrothermally prepared phases α -RbV(HPO₄)₂ and β -RbV(HPO₄)₂ were shown to crystallize with different three-dimensional architectures of vertex-sharing VO₆ and HPO₄ building blocks. The same authors reported the phase NH₄V(HPO₄)₂ to be isostructural with β -RbV(HPO₄)₂.

We report here the characterization of a new polymorph of ammonium vanadium(III) hydrogen phosphate, which we denote α -NH₄V(HPO₄)₂ to distinguish it from the previously reported phase, which is now termed β -NH₄V(HPO₄)₂ (Haushalter *et al.*, 1995). This new α -NH₄V(HPO₄)₂ polymorph is isostructural with α -RbV(HPO₄)₂.

 α -NH₄V(HPO₄)₂ is built up from ammonium cations and a three-dimensional network of vertex-sharing VO₆ octahedra and tetrahedral HPO₄ units, fused together *via* V—O—P bonds (Figs. 1 and 2). N1 occupies an inversion centre, and hence its four protons must be disordered over at least two equivalent sets of sites. The N2-centred ammonium cation makes three fairly long hydrogen bonds [2.1 Å < $d(H \cdots O)$ < 2.2 Å, based on a restrained refinement of the positions of the H atoms] to framework O atoms (two V—O—P

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved and one P-OH species). Both distinct vanadium(III) centres adopt a typical, essentially regular, octahedral coordination $[d_{av}(V1--O) = 2.013(1) \text{ and } d_{av}(V2--O) =$ 2.002(1)Å] with respect to their O-atom neighbours. The site symmetry of V1 is 1. Bond-valence-sum (BVS) calculations (Brown, 1996) yielded values of 2.89 for V1 and 3.00 for V2 (3.00 is expected for pure V^{III} character). Each V atom makes six V-O-P bonds to adjacent HPO₄ groups, covering a fairly wide range of bond angles and with an average value of 139.5°. The three P atoms show typical tetrahedral coordination $[d_{av}(P1-O) = 1.536(1) \text{ Å}, \text{ BVS}(P1) = 4.99; d_{av}(P2-O)$ O) = 1.543(1)Å, BVS(P2) = 4.90; $d_{av}(P3-O)$ = 1.536(1)Å, BVS(P3) = 5.00]. Each of these units makes three P-O-V links and possesses one P-OH grouping, with this component showing a typical lengthening of the P-O bond (Lightfoot & Masson, 1996). All these protons are involved in P-OH···O hydrogen bonds, with the acceptor O atom forming part of a V-O-P bridge.

The polyhedral connectivity in α -NH₄V(HPO₄)₂ results in a complicated packing of distinctive lanternlike groupings of two octahedra, connected by three tetrahedra (Fig. 1). The inversion centre at V1 gives rise to dimer-like units of two lanterns in this phase. A similar lantern motif has been observed in Ca₂V(PO₄)(HPO₄)₂.H₂O (Lii *et al.*, 1992). In the calcium phase, the lanterns are fused into infinite chains.

One way to visualize the building up of the α -NH₄V(HPO₄)₂ structure is by way of the V2, P2 and P3-centred polyhedra, which form four-ring (two oc-

Fig. 1. View of the lantern-like building unit in α -NH₄V(HPO₄)₂. Displacement ellipsoids are shown at 50% probability. Symmetry codes are as given in Table 1.

tahedra plus two tetrahedra) chains propagating along [001]. An intrachain O8-H8...010 hydrogen bond occurs. Pairs of P1-centred tetrahedra fuse V2 octahedra in adjacent chains into contorted sheets lying normal to [001]. Two more hydrogen bonds, O2-H2...O10 and O12-H12...O3, are involved in this interchain connectivity. Finally, the V1-centred octahedra provide intersheet connectivity in the [001] direction, resulting in a three-dimensional network of strictly alternating VO₆ and HPO₄ building blocks. The N1H⁺₄ groups appear to occupy small channels propagating along [001]. The N2H⁺ species occupies small interstices which are visible in both the [100] and [010] directions as distorted eight-ring (four VO₆ and four HPO₄ units, strictly alternating) channels, although there is no suggestion that these extra-framework cations are mobile in this phase.

Fig. 2. Unit-cell packing of α -NH₄V(HPO₄)₂.

 α -NH₄V(HPO₄)₂ is isostructural with α -RbV(HPO₄)₂ (Haushalter et al., 1995), with the V, P and O components of the two phases having very similar geometries. The NH⁺₄ and Rb⁺ cations occupy similar extra-framework sites in these two phases. For α -NH₄V(HPO₄)₂, $d_{av}(N1 \cdots O) = 3.096(2)$ and $d_{av}(N2 \cdots O) = 3.076(2) \text{ \AA}$; for α -RbV(HPO₄)₂, $d_{av}(Rb1-O) = 3.080$ and $d_{av}(Rb2-O) = 3.077$ Å (the

maximum cation-oxygen contact distance considered is 3.4 Å in each case).

Based on unit-cell data, the synthetic phases $NH_4Al(HPO_4)_2$, $KAl(HPO_4)_2$, $NH_4Fe(HPO_4)_2$ and KFe(HPO₄)₂ (Smith & Brown, 1959) are probably isostructural with these vanadium-containing materials. α -NH₄V(HPO₄)₂ complements its polymorph, β -NH₄V(HPO₄)₂ (Haushalter *et al.*, 1995), this latter phase having a different three-dimensional VO₆/HPO₄ polyhedral connectivity based only on four-ring groupings of VO₆ and HPO₄ units. The newly reported $NH_4(Al_{0.64}Ga_{0.36})(HPO_4)_2$ (Stalder & Wilkinson, 1998) is also isostructural with the title compound.

Experimental

 α -NH₄V(HPO₄)₂ was prepared from a mixture of VCl₃ (1.09 g), 85% H₃PO₄ (3.20 g), 25% NH₄OH solution (1.70 g), and 10 ml deionized water (starting molar ratio of NH₄:V:P = 1:1:4). The components were sealed in a 23 ml capacity Teflon-lined hydrothermal bomb and heated to 453 K for 48 h. After slow cooling, the bomb was opened to reveal a mixture of dark green rods of the title compound and limegreen chunks of β -NH₄V(HPO₄)₂ (Haushalter *et al.*, 1995). After recovery by vacuum filtration and washing with water, both phases appear to be indefinitely stable under ambient conditions. We have not yet been able to prepare pure α -NH₄V(HPO₄)₂. Hydrothermal reactions always result in a mixture of the two polymorphs of NH₄V(HPO₄)₂. Under slightly different conditions, Haushalter et al. (1995) may have prepared α -NH₄V(HPO₄)₂ as a green powder during their preparation of β -NH₄V(HPO₄)₂.

Crystal data

2226 reflections with

 $I > 3\sigma(I)$

$(NH_4)_3V_3(HPO_4)_6$	Mo $K\alpha$ radiation
$M_r = 782.8$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 35
Pī	reflections
a = 7.173(2) Å	$\theta = 7.5 - 12.5^{\circ}$
b = 8.841 (2) Å	$\mu = 1.94 \text{ mm}^{-1}$
c = 9.458 (2) Å	T = 298 K
$\alpha = 65.08 (2)^{\circ}$	Rod
$\beta = 70.68 (2)^{\circ}$	$0.4 \times 0.1 \times 0.1 \text{ mm}$
$\gamma = 69.59 (2)^{\circ}$	Dark green
$V = 497.7 (2) \text{ Å}^3$	
Z = 1	
$D_x = 2.61 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.04$
$2\theta/\omega$ scans	$\theta_{\rm max} = 30^{\circ}$
Absorption correction:	$h = -9 \rightarrow 6$
ψ scans (North <i>et al.</i> ,	$k = -11 \rightarrow 11$
1968)	$l = -12 \rightarrow 13$
$T_{\rm min} = 0.591, T_{\rm max} = 0.824$	3 standard reflections
4975 measured reflections	every 97 reflections
2821 independent reflections	intensity decay: none

Refinement

Refinement on *F R* = 0.033 *wR* = 0.037 *S* = 1.096 2226 reflections 168 parameters $(\Delta/\sigma)_{max} = 0.0006$ $\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.62 \text{ e } \text{\AA}^{-3}$ Extinction correction: Larson (1967) Extinction coefficient: 7 (3) Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å, °)

V1-04	2.007 (2)	P1-01	1.522 (2)
V1—O4 ⁱ	2.007 (2)	P1—O2	1.579 (2)
V1-06	2.010 (2)	P1—O3	1.538 (2)
V1-06 ⁱ	2.010 (2)	P1-04	1.505 (2)
V1—09	2.022 (2)	P2-05	1.519 (2)
V1-09 ⁱ	2.022 (2)	P2—O6	1.528 (2)
V201	1.963 (2)	P207	1.532 (2)
V2—O3 ⁱⁱ	2.022 (2)	P208	1.593 (2)
V2—05	1.949 (2)	P3—O9	1.534 (2)
V2—07 ⁱⁱⁱ	2.077 (2)	P3—O10	1.526 (2)
V2—O10 ^{iv}	2.018 (2)	P3—O11	1.494 (2)
V2—011	1.983 (2)	P3—012	1.590 (2)
V2—01—P1	131.8 (1)	V2 ⁱⁱⁱ —07—P2	124.0(1)
V2 ⁱⁱ —O3—P1	135.6 (1)	V1-09-P3	132.1 (1)
V1—O4—P1	162.5 (1)	V2 ^{iv} P3	139.0(1)
V2—O5—P2	146.0(1)	V2-011-P3	153.8 (1)
V106P2	130.6 (1)		

Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z; (iii) -x, 2 - y, -z; (iv) -x, 1 - y, -z.

Table 2. Hydrogen-bonding geometry (Å)

D — $H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$
O2—H2···O9 ⁱ	0.84	1.91	2.742 (3)
O8—H8· · · O10 ^µ	0.82	1.81	2.574 (2)
O12H12· · ·O3	0.93	1.80	2.720(3)
N2H21····O8	0.87	2.37	3.025 (4)
N2-H22···O3 ^m	0.82	2.16	2.858 (3)
N2-H23···O12 ⁱⁱ	0.82	2.14	2.938 (4)
$N2-H24\cdot\cdot\cdot O6^{i}$	0.95	2.17	3.060 (4)

Symmetry codes: (i) 1 + x, y, z; (ii) x, 1 + y, z; (iii) 1 - x, 1 - y, 1 - z.

H-atom parameters were constrained by riding on their O or N partner atoms. Atoms H2, H8, H12, H21, H22 and H23 were located from difference maps, and H24 was placed geometrically [d(N-H) = 0.95 Å]. H atoms were refined isotropically. A Tukey-Prince weighting scheme fitted by a three-term Chebychev polynomial with coefficients 0.279, 0.218 and 0.115 was used (Carruthers & Watkin, 1979).

Data collection: P4 Software (Siemens, 1995). Cell refinement: P4 Software. Data reduction: P4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYSTALS (Watkin, Prout, Carruthers & Betteridge, 1996). Molecular graphics: CAMERON (Watkin, Prout & Pearce, 1996) and ORTEP3 (Farrugia, 1997). Software used to prepare material for publication: CRYSTALS.

We thank the Australian Research Council for funding.

References

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.

Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Haushalter, R. C., Wang, Z., Thompson, M. E. & Zubieta, J. (1995). Inorg. Chim. Acta, 232, 83–89.
- Larson, A. C. (1967). Acta Cryst. 23, 664-665.
- Lightfoot, P. & Masson, D. (1996). Acta Cryst. C52, 1077-1079.
- Lii, K. H., Wen, N. S., Su, C. C. & Chen, B. R. (1992). Inorg. Chem. 31, 439–442.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Siemens (1995). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, J. P. & Brown, W. E. (1959). Am. Miner. 44, 138-142.
- Stalder, S. M. & Wilkinson, A. P. (1998). J. Mater. Chem. 8, 261-263.
- Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (1998). C54, 1197-1200

Ammonium Zinc Vanadium Phosphate, $(NH_4)_3Zn_2V(PO_4)_2(HPO_4)_2$

ZSOLT BIRCSAK AND WILLIAM T. A. HARRISON

Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia. E-mail: wtah@chem.uwa. edu.au

(Received 31 October 1997; accepted 3 March 1998)

Abstract

The title compound, triammonium dizinc vanadium bis(phosphate) bis(hydrogen phosphate), $(NH_4)_3Zn_2V (PO_4)_2(HPO_4)_2$, is the first ammonium zinc vanadium phosphate. It is built up from a three-dimensional network of vertex-sharing VO₆ octahedra and ZnO₄, PO₄ and HPO₄ tetrahedra fused together *via* V—O—P and Zn—O—P bonds [$d_{av}(V$ —O) = 2.001 (2), $d_{av}(Zn$ —O) = 1.949 (2) and $d_{av}(P-O) = 1.538$ (2) Å; $\theta_{av}(V$ —O—P) = 142.5 and $\theta_{av}(Zn$ —O—P) = 131.6°]. NH₄ cations occupy two different types of interstices in the Zn–V–P–O framework.

Comment

Vanadium(III) phosphates have been structurally characterized only recently (Lavrov *et al.*, 1981; Lii *et al.*, 1992; Haushalter *et al.*, 1995). Here, we describe the synthesis and characterization of $(NH_4)_3Zn_2V(PO_4)_2$ -(HPO₄)₂, the first ammonium zinc vanadium(III) phos-

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1104). Services for accessing these data are described at the back of the journal.